云亭数学讲坛2023第2讲——戴斌祥教授

文章来源:11474蒙特卡罗发布日期:2023-03-04浏览次数:10

 应学院邀请,中南大学戴斌祥教授将在线作学术报告。

报告题目:具时滞影响的Lotka-Volterra竞争-扩散-对流模型的稳定性与分支分析

报告摘要:In this talk, we consider a classical two-species Lotka-Volterra competition-diffusion-advection model with time delay effect. By utilizing the implicit function theorem, we obtain the existence of at least one spatially nonhomogeneous positive steady state under some conditions on parameters. By analyzing the corresponding characteristic equation, we show the local stability of this spatially nonhomogeneous positive steady state and the occurrence of Hopf bifurcation from it. When there is no time delay, we also study the global stability of the positive steady state. Based on the idea of Chen et al (2018 J. Differ. Equ. 264 5333-5359), the stability and direction of Hopf bifurcation are derived by introducing a weighted inner product associated with the advection rate. Finally, numerical simulations are carried out to verify the theoretical analysis results.

报告时间:20233915:00

报告地点:腾讯会议号(958-132-578)

邀 请 人:赵孟教授

 届时欢迎广大师生参与交流!


报告人简介

 戴斌祥,中南大学11474蒙特卡罗二级教授、博士生导师;湖南省数学学会常务理事、大学生数学竞赛湖南赛区负责人;中国数学会生物数学专业委员会常务委员。主要从事时滞微分方程与离散动力系统、种群生态学与传染病学、反应扩散方程的定性理论与应用等领域的研究,先后在《Nonlinearity》、《J. Dyn. Diff. Equ.》、《J. Math. Anal. Appl.》、《Appl. Math. Model》、《Discrete Contin. Dyn. Sys.》、《Nonlinear Anal.》等国内外权威期刊上发表学术论文160多篇,主持6项国家自然科学基金面上项目和多项省部级科研课题,获得湖南省科技进步一等奖和湖南省自然科学一等奖各1项,主编出版教材7部,全国宝钢教育基金优秀教师奖。